A pinching estimate for solutions of the linearized Ricci flow system on 3-manifolds

نویسنده

  • Greg Anderson
چکیده

An important component of Hamilton’s program for the Ricci flow on compact 3-manifolds is the classification of singularities which form under the flow for certain initial metrics. In particular, Type I singularities, where the evolving metrics have curvatures whose maximums are inversely proportional to the time to blow-up, are modelled on the 3-sphere and the cylinder S × R and their quotients. On the other hand, Type II singularities (the complementary case) are much more difficult to understand. Despite this, it is known from the work of Hamilton that their singularity models are stationary solutions to the Ricci flow. This uses several techniques, including Harnack inequalities of Li-Yau-Hamilton type, the strong maximum principle for systems, dimension reduction, and the study of the geometry at infinity of noncompact stationary solutions (see§§1426 of [ H2].) In terms of Hamilton’s program, at least two obstacles remain: obtaining an injectivity radius estimate for Type II solutions and ruling out the so-called cigar soliton (the unique complete stationary solution on a surface with positive curvature) as the dimension reduction of a Type II singularity model. On the other hand, it is also conjectured by Hamilton that Type II singularities are not generic. If this conjecture can be proven with some definition of generic which implies that for any compact 3-manifold the Ricci flow with suitable surgeries (see [H5] for how to perform surgeries) does not form Type

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

GEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW

The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...

متن کامل

The Conjugate Linearized Ricci Flow on Closed 3–Manifolds

We characterize the conjugate linearized Ricci flow on closed three– manifolds of bounded geometry and discuss its properties. In particular, we express the evolution of the metric and of its Ricci tensor in terms of the backward heat kernel of the conjugate linearized Ricci flow. These results provide various conservation laws and monotonicity formulas for the linearized flow.

متن کامل

Ricci Flow and Nonnegativity of Sectional Curvature

In this paper, we extend the general maximum principle in [NT3] to the time dependent Lichnerowicz heat equation on symmetric tensors coupled with the Ricci flow on complete Riemannian manifolds. As an application we exhibit complete Riemannian manifolds with bounded nonnegative sectional curvature of dimension greater than three such that the Ricci flow does not preserve the nonnegativity of t...

متن کامل

Ricci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds

We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002